On Solving Large-scale Limited-memory Quasi-newton Equations

نویسندگان

  • JENNIFER B. ERWAY
  • ROUMMEL F. MARCIA
  • R. F. MARCIA
چکیده

We consider the problem of solving linear systems of equations with limited-memory members of the restricted Broyden class and symmetric rank-one matrices. In this paper, we present various methods for solving these linear systems, and propose a new approach based on a practical implementation of the compact representation for the inverse of these limited-memory matrices. Using the proposed approach has an additional benefit: The condition number of the system matrix can be computed efficiently. Numerical results suggest that the proposed method compares favorably in speed and accuracy to other algorithms and is competitive to methods available to only the Broyden-Fletcher-Goldfarb-Shanno update and the symmetric rank-one update. Limited-memory quasi-Newton methods, compact representation, restricted Broyden class of updates, symmetric rank-one update, Broyden-Fletcher-Goldfarb-Shanno update, Davidon-Fletcher-Powell update, Sherman-Morrison-Woodbury formula

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Memory Quasi - Newton Algorithm forLarge - Scale Nonlinear Bound Constrained

In this paper we propose a subspace limited memory quasi-Newton method for solving large-scale optimization with simple bounds on the variables. The limited memory quasi-Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. The search direction consists of three parts: a subspace quasi-Ne...

متن کامل

A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization

In this paper we propose a subspace limited memory quasi-Newton method for solving large-scale optimization with simple bounds on the variables. The limited memory quasi-Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. The search direction consists of three parts: a subspace quasi-Ne...

متن کامل

Representations of quasi-Newton matrices and their use in limited memory methods

We derive compact representations of BFGS and symmetric rank one matrices for optimization These representations allow us to e ciently implement limitedmemory methods for large constrained optimization problems In particular we discuss how to compute projections of limited memory matrices onto subspaces We also present a compact representation of the matrices generated by Broyden s update for s...

متن کامل

An Improved Diagonal Jacobian Approximation via a New Quasi-Cauchy Condition for Solving Large-Scale Systems of Nonlinear Equations

We present a new diagonal quasi-Newton update with an improved diagonal Jacobian approximation for solving large-scale systems of nonlinear equations. In this approach, the Jacobian approximation is derived based on the quasi-Cauchy condition. The anticipation has been to further improve the performance of diagonal updating, by modifying the quasi-Cauchy relation so as to carry some additional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016